硕士研究生指导教师简介 |
姓 名 |
蒋全胜 |
|
性 别 |
男 |
出生年月 |
1978.07 |
最高学历、学位 |
博士研究生、工学博士 |
职 称 |
教授 |
职 务 |
副院长 |
电子邮箱 |
qschiang@163.com |
个人简介
一、基本情况:
苏州科技大学机械工程学院教授、副院长。2009年4月毕业于东南大学机械制造及其自动化专业,获工学博士学位,2016年英国南威尔士大学机械系访问学者。2017年被遴选为硕士生导师,2018年被评为苏州科技大学优秀教师。中国机械工程学会高级会员,中国振动工程学会高级会员,IEEE学会会员、中国自动化学会会员,江苏省科技专家库专家。2022年江苏省科技副总特聘专家。
二、主要研究领域及学术成就:
主要从事机械装备状态监测与智能故障诊断等研究工作,包括:(1)复杂机电设备故障诊断与智能运维;(2)智能制造系统及装备设计;(3)机器人及自动化。近年来主持国家自然科学基金项目1项、江苏省自然科学基金面上项目2项。在《Reliability Engineering & System Safety》、《Mechanical Systems and Signal Processing》、《Knowledge-Based Systems》、《机械工程学报》等国际国内核心期刊上发表学术论文50余篇,其中被SCI收录30余篇,单篇最高被SCI他引104次。担任《IEEE Transactions on Industrial Electronics》、《Information Sciences》、《Mechanical Systems and Signal Processing》、《IEEE Transactions on Instrumentation and Measurement》、《振动工程学报》、《振动与冲击》等期刊审稿人;已授权国家发明专利5项。主编本科教材2部(科学出版社、中国科技大学出版社),指导本科生获2023年中国大学生工程实践与创新能力大赛银奖1项、第七届全国大学生机械创新设计大赛二等奖1项。
三、代表性科研成果:
学术论文:
[1] Xingchi Lu, Quansheng Jiang*, Yehu Shen, et.al. Enhanced residual convolutional domain adaptation network with CBAM for RUL prediction of cross-machine rolling bearing [J]. Reliability Engineering & System Safety, 2024, 245:109976. doi: https://doi.org/10.1016/j.ress.2024.109976. (IF:8.1, 中科院1区Top)
[2] Quansheng Jiang*, Xiaoshan Lin, Xingchi Lu, et.al. Self-supervised learning-based dual-classifier domain adaptation model for rolling bearings cross-domain fault diagnosis[J]. Knowledge-Based Systems, 2024, 284:111229. doi: https://doi.org/10.1016/j.knosys.2023.111229. (IF:8.8, 中科院1区Top)
[3] Xuejian Yao, Xingchi Lu, Quansheng Jiang*, et.al. SSPENet: Semi-supervised prototype enhancement network for rolling bearing fault diagnosis under limited labeled samples[J]. Advanced Engineering Informatics, 2024, 61:102560. doi: https://doi.org/10.1016/j.aei.2024.102560. (IF:8.8, 中科院1区Top)
[4] Huo Chunran, Jiang Quansheng*, Shen Yehu, et.al. A class-level matching unsupervised transfer fault diagnosis method for rolling bearing based on maximum classifier discrepancy[J]. Applied Soft Computing, 2023, 146:110739. (IF:8.7, 中科院1区Top)
[5] Xu Weiyang, Jiang Quansheng*, Shen Yehu, et.al. RUL prediction for rolling bearings based on Convolutional Autoencoder and status degradation model [J]. Applied Soft Computing, 2022, 130: 109686. (IF:8.7, 中科院1区Top)
[6] Zhu Junjun, Jiang Quansheng*, Shen Yehu*, et.al. Res-HSA: Residual hybrid network with self-attention mechanism for RUL prediction of rotating machinery[J]. Engineering Applications of Artificial Intelligence, 2023, 124:106491. (IF:8.0, 中科院2区Top)
[7] Huo Chunran, Jiang Quansheng*, Shen Yehu, et.al. Enhanced transfer learning method for rolling bearing fault diagnosis based on linear superposition network[J]. Engineering Applications of Artificial Intelligence, 2023, 121: 105970. (IF:8.0, 中科院2区Top)
[8] Lin Xiaoshan, Jiang Quansheng*, Shen Yehu, et.al. Multi-scale pooled convolutional domain adaptation network for intelligent diagnosis of rolling bearing under variable conditions [J]. IEEE Sensors Journal, 2023, 124:106491. (IF:4.3, 中科院2区Top)
[9] Xu Weiyang, Jiang Quansheng*, Shen Yehu, et.al. New RUL prediction method for rotating machinery via data feature distribution and spatial attention residual network[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 3507909. (IF:5.6, 中科院2区)
[10] Huo Chunran, Jiang Quansheng*, Lin Xiaoshan, et.al. An unsupervised transfer learning approach for rolling bearing fault diagnosis based on dual pseudo-label screening[J]. Structural Health Monitoring-An International Journal, 2023. (IF:6.6, 中科院2区)
[11] Huo Chunran, Jiang Quansheng*, Shen Yehu, et.al. New transfer learning fault diagnosis method of rolling bearing based on ADC-CNN and LATL under variable conditions[J]. Measurement, 2022, 188: 110587. (IF:5.6, 中科院2区)
[12] Yao Xuejian, Zhu Junjun, Jiang Quansheng*, et.al. RUL prediction method for rolling bearing using convolutional denoising autoencoder and bidirectional LSTM[J]. Measurement Science and Technology, 2024, 35(3): 035111.
[13] Lu Xingchi, Xu Weiyang, Jiang Quansheng*, et.al. Category-aware dual adversarial domain adaptation model for rolling bearings fault diagnosis under variable conditions[J]. Measurement Science and Technology, 2023, 34(9): 095104.
[14] Ma Ming, Jiang Quansheng*, Wang Haochen*, et.al. Modeling and Experimental Evaluation of a Bionic Soft Pneumatic Gripper with Joint Actuator[J].Journal of Bionic Engineering, 2023, 20(4): 1532-1543.
[15] Quansheng Jiang, Kai Cai, Shilei Wu, Fengyu Xu. Design and experiment of a variable stiffness soft manipulator for non-destructive grasping[J]. International Journal of Intelligent Robotics and Applications (2024). https://doi.org/10.1007/s41315-024-00320-7.
[16] Jiang Quansheng*, Cai Kai, Xu Fengyu. Obstacle-avoidance path planning based on the improved artificial potential field for a 5 degrees of freedom bending robot[J]. Mechanical Science, 2023, 14, 87-97.
[17] Qian Chenhui, Zhu Junjun, Shen Yehu, Jiang Quansheng*, Zhang Qingkui*. Deep transfer learning in mechanical intelligent fault diagnosis: application and challenge[J]. Neural Processing Letters, 2022, 54:2509-2531.
[18] Qian Chenhui, Jiang Quansheng*, Shen Yehu, et.al. An intelligent fault diagnosis method for rolling bearings based on feature transfer with improved DenseNet and joint distribution adaptation[J]. Measurement Science and Technology, 2022, 33(2): 025101.
[19] Xu Weiyang, Shen Yehu*, Jiang Quansheng*, et.al. Rolling bearing fault feature extraction via improved SSD and a singular-value energy autocorrelation coefficient spectrum[J]. Measurement Science and Technology, 2022, 33(8): 085112.
[20] Zhu Junjun, Jiang Quansheng*, Shen Yehu, et.al. Application of recurrent neural network to mechanical fault diagnosis: a review [J]. Journal of Mechanical Science and Technology, 2022, 36 (2): 527-542.
[21] Fengyu Xu, Suya Dai, Quansheng Jiang, et.al.Kinematic modelling and experimental testing of a particle-jamming soft robot based on a DEM-FEM coupling method[J]. Bioinspiration & Biomimetics, 2023, 18(4): 046018.
[22] Fengyu Xu, Suya Dai, Quansheng Jiang, et.al. Developing a climbing robot for repairing cables of cable-stayed bridges[J]. Automation in Construction, 2021, 129(6):103807.
[23] Fengyu Xu, Quansheng Jiang, Yuxuan Lu, et.al. Modelling of a soft multi-chambered climbing robot and experiments[J]. Smart Materials and Structures, 2021, 30(3), 035009:1-17.
[24] Fengyu Xu, Fanchang Meng, Jiang Quansheng, et.al. Grappling claws for a robot to climb rough wall surfaces: mechanical design, grasping algorithm, and experiments[J]. Robotics and Autonomous Systems, 2020, 128(6): 103501.
[25] Fengyu Xu, Quansheng Jiang, Dynamic obstacle-surmounting analysis of a bilateral-wheeled cable-climbing robot for cable-stayed bridges[J]. Industrial Robot, 2019, 46 (3): 431-443.
[26] Fengyu Xu, Quansheng Jiang*, Lina Rong. Structural model and dynamic analysis of six-axis Cartesian coordinate robot for sheet metal bending[J]. International Journal of Advanced Robotic Systems, 2019, 7: 1-16.
[27] Quansheng Jiang, Fengyu Xu. Design and Motion Analysis of Adjustable Pneumatic Soft Manipulator for Grasping Objects[J]. IEEE Access, 2020, 8: 191920-191929.
[28] 蒋全胜*,许伟洋, 朱俊俊, 等. 基于动态加权卷积长短时记忆网络的滚动轴承剩余寿命预测方法. 振动与冲击, 2022, 41(17):281-291.
[29] 徐丰羽,蒋全胜,江丰友,等. 基于堵塞原理的变刚度软体机器人设计与实验[J]. 机械工程学报, 2020, 56(23): 67-77.
[30] Quansheng Jiang*, Qixing Zhu, Wei Liu, et.al. An improved Laplacian Eigenmaps method for machine nonlinear fault feature extraction [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, 232(21): 3833 -3842.
[31] Jiang Quansheng*, Zhu Qixin, Wang Bangfu, et.al. Nonlinear machine fault detection by semi-supervised Laplacian Eigenmaps [J]. Journal of Mechanical Science and Technology, 2017, 31(8): 3697-3703.
[32] 蒋全胜,李华荣,黄鹏. 一种基于非线性流形学习的故障特征提取模型. 振动与冲击, 2012, 31 (23): 132-136.
[33] 蒋全胜, 贾民平, 胡建中,许飞云. 一种基于人工免疫的模糊核聚类算法[J]. 中国机械工程, 2008, 19(5): 594-597.
[34] Jiang Quansheng, Jia Minping, Hu Jianzhong, et.al. Machinery Fault Diagnosis Using Supervised Manifold Learning [J]. Mechanical Systems and Signal Processing, 2009, 23(7): 2301-2311. (SCI它引104次)
[35] Jiang Quansheng, Jia Minping, Hu Jianzhong, et.al. Modified Laplacian Eigenmap Method for Fault Diagnosis [J]. Chinese Journal of Mechanical Engineering, 2008, 21(3): 90-93.
发明专利:
[1] 气动柔性关节抓持装置及其控制方法,CN202210872422.2,2023-7-14,发明专利,授权,中国,第1发明人.
[2] 基于半监督流形学习的非线性故障检测方法,CN201310137829.1,2016-1-6,发明专利,授权,中国,第1发明人.
[3] 一种抗震支架的自动冲床冲孔定位装置,ZL202220516993.8,2022-6-24,实用新型,授权,中国,第2发明人.
[4] 基于语义分割技术的机器人SLAM方法,201810046213.6,2021-9-10,发明专利,授权,中国,第3发明人.
[5] 一种基于数据驱动的滚动轴承剩余寿命预测方法,CN202210158457.X,2022-2-21,发明专利,实审,中国,第1发明人.
[6] 一种电动车固定装置及双层停放装置,CN201911040013.0,2019-10-29,发明专利,实审,中国,第1发明人。
四、代表性科研项目:
[1] 国家自然科学基金项目,基于半监督流形学习的非线性故障诊断方法研究(No. 51005025),主持完成,2011.01-2013.12.
[2] 国家自然科学基金项目,在线学习语义图模型室外动态环境的视觉SLAM方法研究(No. 51975394),主要参与,2020.01-2023.12.
[3] 江苏省自然科学基金面上项目,基于循环神经网络度量学习的旋转机械早期故障预示及寿命预测研究(No. BK20211336),主持在研,2021.07-2024.06.
[4] 江苏省自然科学基金面上项目,基于稀疏流形学习的机械复合故障特征提取与诊断方法研究(No. BK20151199),主持完成,2015.07-2018.06.
[5] 安徽省自然科学基金面上项目,半监督流形学习及其在非线性特征提取中的应用(No. 11040606M114),主持完成,2011.01-2013.12.
五、荣获的科技成果奖励:
[1] 2022年安徽省科学技术奖三等奖,排名1/6.
[2] 2021年全国商业科技进步奖一等奖,排名2/10.
[3] 2020年全国商业科技进步奖三等奖,排名1/12.
[4] 2019年度江苏机械工业科技进步奖一等奖,排名6/12.
[5] 2019年度江苏省轻工业科学技术发明奖二等奖,排名4/8.